The regulatory role of glucocorticoid and mineralocorticoid receptors in pulsatile urea excretion of the gulf toadfish, Opsanus beta.
نویسندگان
چکیده
Gulf toadfish, Opsanus beta, are one among a group of unusual teleosts that excrete urea as their predominant nitrogen end product in response to stressful conditions. Under conditions of crowding or confinement, fasted toadfish excrete the majority of their nitrogen waste in large pulses of urea (>90% of total nitrogen) lasting up to 3 h. An earlier study demonstrated that cortisol has an inhibitory influence on urea pulse size. The present study tested the hypothesis that cortisol mediates changes in urea pulse size in ureotelic toadfish through the glucocorticoid receptor (GR) and not the mineralocorticoid receptor (MR). In vivo pharmacological investigations were used to manipulate the corticosteroid system in crowded toadfish, including experimentally lowering plasma cortisol levels by the injection of metyrapone, blocking cortisol receptors through exposure to either RU-486 (GR antagonist) and spironolactone (MR antagonist), or through exogenous infusion of the tetrapod mineralocorticoid aldosterone (tetrapod MR agonist). The data demonstrate that lowering the activity of cortisol, either by inhibiting its synthesis or by blocking its receptor, resulted in a two- to threefold increase in pulse size with no accompanying change in pulse frequency. Treatment with spironolactone elicited a minor ( approximately 1.5-fold) reduction in pulse size, as did aldosterone treatment, suggesting that the anti-mineralocorticoid spironolactone has an agonistic effect in a piscine system. In summary, the evidence suggests that urea transport mechanisms in pulsing toadfish are upregulated in response to low cortisol, mediated primarily by GRs, and to a lesser extent MRs.
منابع مشابه
Cortisol-sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta).
Gulf toadfish (Opsanus beta) use a unique pulsatile urea excretion mechanism that allows urea to be voided in large pulses via the periodic insertion or activation of a branchial urea transporter. The precise cellular and subcellular location of the facilitated diffusion mechanism(s) remains unclear. An in vitro basolateral membrane vesicle (BLMV) preparation was used to test the hypothesis tha...
متن کاملDogmas and controversies in the handling of nitrogenous wastes: 5-HT2-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish, Opsanus beta.
When injected arterially, serotonin (5-hydroxytryptamine; 5-HT) has been shown to elicit naturally sized urea pulse events in the gulf toadfish, Opsanus beta. The goal of the present study was to determine which 5-HT receptor(s) was involved in mediating this serotonergic stimulation of the pulsatile excretion mechanism. Toadfish were surgically implanted with caudal arterial catheters and intr...
متن کاملBranchial and renal handling of urea in the gulf toadfish, Opsanus beta: the effect of exogenous urea loading.
The objective of this study was to determine whether the pulsatile facilitated diffusion transport mechanism (tUT) found in the gills of the gulf toadfish (Opsanus beta) and the active secretion transporter thought to be present in its kidney could be saturated when faced with elevated plasma urea concentrations. Toadfish were infused with four consecutive exogenous urea loads at a rate of 0, 1...
متن کاملMolecular characterization of a urea transporter in the gill of the gulf toadfish (Opsanus beta).
Urea excretion by the gulf toadfish (Opsanus beta) has been shown in previous studies to be a highly pulsatile facilitated transport, with excretion probably occurring at the gill. The present study reports the isolation of an 1800 base pair (kb) cDNA from toadfish gill with one open reading frame putatively encoding a 475-residue protein, the toadfish urea transporter (tUT). tUT, the first tel...
متن کاملDogmas and controversies in the handling of nitrogenous wastes: ureotely and ammonia tolerance in early life stages of the gulf toadfish, Opsanus beta.
The marine gulf toadfish (Opsanus beta) is an unusual teleost fish as it is able to switch between ammoniotelism and ureotelism in response to a variety of laboratory conditions. The present study integrates field work conducted in Biscayne and Florida Bays, USA with laboratory studies to examine ureotelism during the early life history stages of O. beta. Adult toadfish voluntarily nested in ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 12 شماره
صفحات -
تاریخ انتشار 2009